
Linux 4k Intro Coding

Aug 3rd 2006
Markku “Marq” Reunanen

Contents

● Overview
● Choosing the language
● Dealing with GCC
● Dynamic library loading
● Music generation
● Compression
● Code level tricks
● Useful tools and some pointers

Overview

● Linux 4k intros have been around a few years
– Suitable platform because of good tools, useful
libraries and minimal executable overhead

● By knowing the tricks of the trade you can spend
the precious 4096 for the actual content
– You can save hundreds of bytes with a little extra work

● The methods presented here are based on the three
4k intros by me and Antti “NF” Silvast
– Yellow Rose of Texas (Asm'03)
– Je Regrette (Asm'04)
– Make It 4k (Asm'05)

Choosing the language (1)

● Asm
– You know what you're doing. No overhead but error
prone and not easy to try out or tweak stuff.

● C
– More overhead but still suitably small. Less painful
than pure asm :)

● C++
– Too much overhead for a 4k. Painful name mangling.

● Others
– For example Perl is pretty much available everywhere.
No interface to gfx/music but potential for scripting.

– Shader asm & GLSL

Choosing the language (2)

● Our approach: combined C and asm
● System level code, soft synth and startup in asm

– These need to be written only once
– As small as it gets

● Effect code in C
– Easy to code and portable
– We were able to release Linux/Win/OSX/SGI versions
in less than a week

● There's still some overhead in using C but that's
the penalty of being lazy

Dealing with GCC

● GCC was the natural choice for a C compiler
– Free, effective, available

● You can do a lot by just command line switches:
– -Os tends to suck, -O1 usually better
– -ffast-math of course
– -fshort-double (dangerous!)
– -nostdlib
– -fno-inline, -fmove-all-movables, -fpeephole2,
-fforce-mem, -fexpensive-optimizations, etc.

● There's no such thing as a perfect parameter set
● GCC version does matter!

– By my experience 3.2 creates the smallest binaries

Dynamic library loading (1)

● Important external libraries: SDL & OpenGL
– Some consider SDL use lame -- matter of opinion. This
method is equally valid for GLX, GLUT and others.

● Using an external library function generates about
70 byte (compressed) overhead if done via
standard dynamic linkage

● 1st solution: try to minimize the number of external
function calls
– For example do not use both glVertex2f and glVertex3f

● For any GL effects we need at least 10-20
functions. More tweaking required.

Dynamic library loading (2)

● Solution: open the libraries ourself and call them
through function pointers

● Easy to do by using dlopen and dlsym functions
– Open library with dlopen
– Get pointers to functions with dlsym
– After this they can be used from C or asm as usual

● Can be done in C but better to use asm for loading
● Overhead reduced to approximately 20 bytes
(compressed) per function

● Remember to put -ldl on linker command line!

Music generation (1)

● Unfortunately, these days we need music for 4k
intros too

● Under Linux no common high level sound API
– OSS/ALSA not high-level, MIDI not common and has
poor quality anyway

● Need for a soft synth
● Our solution: pure asm synth with four wave-
forms, large number of channels and some effects
– Typically takes around 1.5k (compressed) with the tune
– Basic waveform generation and mixing easy
– ADSR a necessity in practice

Music generation (2)

● Finally, effects make the beeps sound fat:
– Frequency sweep, especially for bass drums
– Amplitude modulation
– Delay loop echo

● Not overly hard to code but does involve some
effort

● Our synth is freely available -- but probably not
easy to understand

● Composing for such a synth is not for the weak of
heart: plain text or even asm file
– Get a tech savvy musician or write a front-end or a
converter

Compression (1)

● Gzip is available on every single Linux box, thus
the well-known gzip stub compression trick:
– The intro starts with a shell script that uncompresses
and executes the following compressed binary data

– Use gzip -n and –best for the smallest result
● Here's our attempt at a stub (56 bytes):

a=/tmp/I;tail -n+2 $0|zcat>$a;chmod +x $a;$a;rm $a;exit

● Is it really optimal?
– Must use /tmp according to the rules
– Executable flags must be set
– Binary must be removed from /tmp!
– Feel free to improve ;)

Compression (2)

● Dealing with compressed code is not always
straightforward
– Hand-tuning may actually increase the code size if it
compresses less

– The effect of locally removing or adding instructions
or function calls appears pretty random

– The same is true for compiler flags but can be helped
easier. More about that later.

Code level tricks (1)

● Remove subroutines
– Makes the code a little messier but you get rid of the
entry/return instructions

● Use floats instead of doubles
– Standard math routines use doubles and take
unnecessary space unless you apply -fshort-double.
Note that you can't call external functions with double
parameters after this.

● Static tables
– Declaring local arrays as static removes their init code
yielding some bytes

Code level tricks (2)

● A tiny pseudorandom generator can be built with a
simple rotation, xor and addition:

%define RANDOM_SEED 0f31782ceh

rnd: mov eax,[rndi]
add eax,RANDOM_SEED
xor eax,RANDOM_SEED
ror eax,1
mov [rndi],eax
ret

rndi: dd RANDOM_SEED

Useful tools

● NASM, the Netwide Assember
– Proper syntax, incbin, macros, free and all

● ELF kickers package and especially sstrip
– Strips all unnecessary segments and some more out

● GC Masher
– Helps you select an optimal set of command line
parameters for GCC

– Takes some time to brute force test a set of parameters
but it's all free bytes to you

– For example “Je Regrette” lost 74 bytes

Some further pointers

● Brian Raiter's “AWhirlwind Tutorial on Creating
Really Teensy ELF Executables for Linux”
– Serious ELF header hacking for a minimal startup

● Timo Wigren's “HOWTO: 4k intros in
GNU/Linux”
– Some basic tricks for size tweaking

● Full source and Makefiles of our prods are
available on the Fit homepage (http://www.kameli.net/fit/)
– “Make it 4k” has the most recent tricks except GC
Masher in the archive

The End

Thanks for your attention!
Questions? Comments?

